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ABSTRACT

It is essential to build, maintain, and use our transportation systems in a manner that
meets our current needs while addressing the social and economic needs of future
generations. I n todayds world, traensportation
impacts to our societies. To this end, researchers have been utilizing various statistical
methods to better study the flow of traffic into the road networks. However, these
valuable studies cannot realize their true potential without solid irdepth

understanding of the connectivity between the various traffic intersections. This paper
bridges the gap between the engineering and social science domains. To this end, the
authors propose a dynamic social network analysis framework to study the centrality of
the existing road networks. This approach utilizes the field of network analysis where:
(1) visualization and modeling techniques allow capturing the relationships,
interactions, and attributes of and between network constituents, and (2) mathematical
measurements facilitate analyzing quantitative relationships within the network.
Connectivity and the importance of each intersection within the network will be
understood using this method. The authors conducted social network analysis (SNA)
using a two stulies in Louisiana. Results indicate intersection SNA modeling aligns
with current congestion studies and transportation planning decisions
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INTRODUCTION

Traffic congestion is a major problem i
Report Card, about2% of major urban highways were conges®d {[This congestion may
be caused by a 39% increase in VMT with only a A&tdase in new construction road miles
between 1990 and 2002)( Traffic congestion causes the following issues: reduced in
travel speeds, restricted roadway capacity, unstable traffic conditions, increased fuel costs
and length of travel time2,9, 15).

When delays occur, it is an indicator that a particular transportation network does not
have a suitable design to meet the social and economic needs of current and future users.
Increases in fuel consumption, engine emissions, vehicle wear anahngavasted time are
caused by traffic congestio4, 3, 20). Traffic jams have also detrimental effects on the
physical and psychological welleing of commutersl{, 20). In addition, high levels of
speed reduction and travel time variability dasgerous to both the mental and physical
safety of commuters. As a result, there are healthcare costs associated with bottlenecks and
blockages. A study published by the National Institutes of Health (NIH) predicts the cost
related to health impacts cd by congestion to be $13 billion by 2020)( Another
negative cost effect of grid locked traffic is reduced economic productivity by limiting
mobility of roadway users and commute2d)( In total, all negative impacts caused by
traffic congestioncost the economy $101 billion a yed.(

Transportation system users experience many of these effects on a regular basis. For
many people, traffic congestion is a daily fact of life. A commute that takes 30 minutes in
normal conditions may take 45 miestto more than 60 minutes in bottle necked traffic

conditions. Many roadway users are forced to deal with extended and variable commute



times in order to travel to and from work, medical appointments, social events, etc. They
deal with the negative effes of travel time delays without giving much thought to what
congestion really is. They simply take familiar routes to arrive at their planned destinations.
For example, when commuters can accurately predict the travel time of a desired route, it is
likely that they will travel on that routd ). Transportation system users are hesitant to use
untested travel networks to reach their planned destination because the travel time prediction
of a new network can be less reliable than the time predictioriofrégular travel network.

They prefer to plan for extended and variable travel times than to plot different commute

routes.

OBJECTIVE

The objective of this research is to help bridge the gap between engineering and
social science disciplinegttention is given to determine the applicability of social science
to transportation studied.he main goal of this proposal is to gather in depth analytic
information which should enable decision makers to effectively and efficiently prioritize and
optimize fuure infrastructure transportation projects. To achigNs goal, the main objective
of this projects tostudy the centrality of the existing road networks using social network
analysis As transportation networks are groups of related intersection®addays, this

SNA model can provide guidance for improving these relationships.

SCOPE

This work evaluated existing congestion identification and mitigation models. To
mitigate traffic congestion several methods of evaluations have been developedrtonget

key traffic attributes and aid decision makers in transportation planning efforts. -Origin
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destination (@D) demand, signal timing and geometry of intersections or roadways are some

variables that can indicate that congestion will occur. Theseutéts provide guidance

when designing new networks and redesigninglate, congested transportation networks.
O-D demand is a critical component of the trip distribution calculatidaring a

typical trip distribution calculation, @ demand is determed by assigning origin and

destination pairs for transportation network user trips.

The accuracy of €D calculations is affected by twecertainty causing variables:
route selection and traffic volugrvariability 8). To accurately calculate origatestination
demands, more detailed information is required. It is desirable to more to have more reliable
capacity information to either know the exact capacity of the current network and to reliably
forecast the capacity of the future network.

A variety ofO-D demand literature was reviewed for this work, howevematter
the focus of the literature, each study focused on at least one of the two main categories in
the origindestination demand calculation: route variability and/or traffic volume accuracy
The route variability category will focus on research and literature that discusses route
selection and use factors. The traffic volume accuracy category will focus on research and
literature that discusses traffic volume determination, accuracy gmpaéd improvements.
The literature will be reviewed, discussing the research and findings, with a summary
provided in a table to compare the findings of each set of research findings.

One problem or concern in determining origiestination demand the actual route
a transportation network user takes between their origin and destinationzalDes give an
indication of the demand or importance of selecteld @airs. Traditionally, telephone

surveys, census data and roadside surveys have been aseattempt to determine the
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actual route transportation network users prefer and actuall2ijseA problem with these
methods is that as soon as the data has been collected, it is old and possibly obsolete.
Recently, cell phone tracking has beeadi® estimate traffic volumes on selected links or
roadways at specific times. This tracking method provides almost real time transportation
network user tracking. This phone tracking method can also be used to determinewhich O
pairs contribute to &ffic volume on a selected link. Researchers can use this method to
analyze how the @ demand and route selection change when different travel/traffic and
environmental events occur. One study indicated that close to 60% of traffic on a congested
highway route, during rush hour, was local in natit#)( This indicates that the majority of
the roadway users are fAcommuterso with the re
interstate traveler2(). Cell phone tracking has enabled the accuratking of route
selection and traffic volume of selected routes. The increased, and more detailed, route
information afforded by tracking cell phones could be used to by transportation planners to
make more exact transportation network improvementshadges.
The length of time it takes to travel between ab @air will impact route selection.
Routes with the shortest perceived travel time will be used to conAegidlrs. Perceived
route length is based on several route characterigtltgsical length of each route, presence
of congestion and the amount of 4a®.tAval traffi
routebdés perceived travel time iIis equal to its
Once determined, perceivedvel time is a major factor in determining system flexibility.
Factored with the number of different routes, as well as, the number of independent links
available on these different routes, perceived travel time impacts the flexibility of a model

(19). Increasing system flexibility, improves travel time reliabilit@) While travel time
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reliability is increased, a network with a high level of flexibility may complicate the
determination of route usage and congestion location.

Route uncertainty iene of two variables that directly contribute to uncertainty of the
O-D calculation. Route uncertainty is caused by multiple solutions because of incomplete
nature of the €D calculation and by errors in traffic coun8.( To control this uncertainty,
ageneralized demand scale model was developed. This model attempts to account for as
much route variability as possible through observed link flow constraints, capacity
constraints of unused links and path 8¢t Research found that this demand modzd w
accurate and within the required confidence intervals when applied an actual transportation
network 8). The generalized demand model reviewed can be used to more accurately
identify critical routes and links within a studied network.

Network capacityeliability is critical to transportation network design and use
because it can be used by decision makers when managing infrastructure, improving
roadways against disaster and providing a flow control implementation indiéator (
Capacity reliability ighe probability that a network, at a required service level, can meet the
traffic volume demand requiremen®.( Chen et al., defined 7 measures which use
traditional links and nodes in calculating network reliability: connectivity reliability, travel
time reliability, within budget time reliability, travel demand reduction reliability, travel
demand satisfaction reliability, encountered reliability and capacity reliaid)ityRecause
these measures focus on individual links or nodes within speudittes of transportation,
they do not give a good measure of the entire network capacity and reliability.

To determine full network capacity reliability, a reserve capacagehand network

capacity modebased on the ultimate capacity and practitdity concepts were developed
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(7). These capacity models are defined below:
1 Reserve capacity is the largest full networO®natrix multiplier that be applied

without exceeding individual link capacities or required levels of service;

1 Ultimate capacity is themaximum volume a system can process without exceeding
individual link or zone capacities;

1 Practical capacity is the difference between the at a system can handle and the
actual GD demand that is currently occurring.(

Applicationof the ultimateand practical capacity models enabled a-aoifiorm O-D
growth, allowing for zonal activity allocation analysis, in conjunction with the physical
capacity of zonal land us&)( These models expand and improve on existi+ig @odels
because nonniform O-D growth more accurately reflects actual growth and use patterns.

As such, network capacity reliability is improved.

Another study found that the amount of budget spent on a network influences
capacity reliability. Specifically, network capacity relidyilis incrementally increased to a
maximum as more budget is spent on a network to enlvahome and capacity2@). The
incremental jumps could occur when smaller links are able to significantly expand capacities
through relatively simple changes like lane additions. Once right of way is used up, capacity
increases can only occur through more limited options likeawgal ITS or by slightly
modifying network or road layout. As such, when major budget expenditures have been used
up on a link within a network, spending more budget, will not improve capacity reliability.

A third study focused on developing a new capatibdel that could be used to
estimate the throughput of a network so that higher level flow control and demand

management can be perform@@)( This model can be used to forecast how much
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additional capacity a network could handle using the existimgstrficture, develop public
policies to ensure the network is not overloaded and prepare for infrastructure additions or
modifications to accommodate additional traffic flo&8)( Capacity modeling can be a
strong transportation planning tool. This echuse it can be used to model future flows to
develop policies that limit flow growth to remain within the capacity and plan for
infrastructure improvements and additions.

Traffic volume accuracy is key to-D estimation. Accurate traffic volume
information enables a better understanding of the route selection betweeld pai© It has
been determined that ITS programs that install detectors at various locations can accurately
count and then predict traffic volume and flow§)( Research has showarstrong
correlation between predicted traffic flows determined by formulas derived from analyzing
actual traffic flows and actual traffic flows observed by counting sen$0ys Though not as
high, there a correlation between predicted and actual time(10). The ability to
reasonably predict traffic volumes and travel times can be used by transportation planning
agencies to modify and maintain their infrastructure. Accurate travel times and traffic
volumes can also be used to give transportateiwork users real time information upon
which they may react to use the network links that provide for the fastest traveiomef
summary and comparison of relevanrbDQlemand literature is detailed belowTable 1
Blank boxes indicate a certaatiribute was not studied in the literature, whereas, boxes filled

with an Ax0 indicate that the selected |liter
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Table L Summary & Comparison of O-D Demand Literature Review Findings

0-D Demand Variable Impacted

Chen et al.

Chootinan & Chen

Lametal.

Sofer et al.

Wang et al.

Yang et al.

Yim et al.

Route Variability

X

X

X

X

X

Traffic Volume Accuracy

X

X

X

X

X

X

Factors Studied

Capacity Reliability

X

X

X

X

Demand

X

Travel Time

X

X

Level of Service

Origins and Destinations of Users

X

General Description

Developed reserve,
ultimate and practical
capacity
measurements.

Developed General
Demand Model to
account for route

choice options.

Model to accurately
predict link flows and
travel times.

Individual perception
drives route selection
which can impact travel
time and capacity flow.

Used cell phones to
track origin &
destination of
transportation
network users.

Model to predict how
current infrastructure
will handle future
volumes.

Reliabilty increases
with budget spent.
Determined
probability capacity
will not exceed
current capacity.

Two factors that impact the travéhe and traffic volume, key in determining®

demand are signal timing and geometirytersection and roadway geometry can impact the

decision making of drivers and safety of the roadway. Signal timing can significantly

influence the @D demand throughegative travels times and increased congestion.

Intersection and roadway geometry consists of the general layout of the roadway.

Grade changes, both vertically and horizontally, are geometric considerations that can

negatively impact the roadway users. Skewness and site distances impact intersections.

Layout of minor cross streets and shopping center entrances also impact the overall geometry

of the adjacent roadways and intersection. Lane configuration is also a geometric factor that

influences roadway and intersection desigurther, it wagoundthat typical four way

intersections with turning lanes experience more congestions because they are negatively

impacted by skewness and downgréti®. This findingsupports grid network roadway

systems and 90 degree intersection crossifigs. geometryand layout of shopping center

access points and minor cross streets also impacts traffic flow. It has been determined when

planners design roadways with no left turn or congested access out of shopping centers or

with poorly timed signals at minor crosseets, roadway users may opt to take right turns,

followed by uturns in an effort to minimize their wait time and travel tih2) ( Liu et al.
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also found turning right, then making dwn to avoid delayed left turns on congested

roadways is a commaractice used by driverd?). Drivers estimate that they will be able

to travel the extra distance required by these movements faster than the time they will be
delayed prior to making the intended left turn movement. Often, reduced travel time does
notresult from the right turn, left turn movement. In fact, it has been found that performing a
u-turn results in a longer travel time or delay than waiting to perform a leftt@yn Related

to roadway and intersection geometry, is overall transpantaticastructure design. Right

lanes often show lower saturation rates or vehicle counts than middle or left lanes on multiple
lane roadways because less aggressive drivers use the right lane and because worse pavement
conditions are often preserdj. Another roadway design factor that can impact traffic flow

is location of bus stops. Busses stopped on roadways cause traffic to deviate from the right
lane to continue. This has the potential to cause congestion. The longer a bus waits at a stop
and tre closer the stop is to the intersection, the more likely congestion is to occur in and
around the intersection, potentially impacting the network as a wh@)le (

Signal timing is another major factor that impacts traffic volume and travel time.
Improperly timed signals have the potential to reduce roadway capacity and increase travel
time. Well timed signals have the potential to increase roadway traffic counts and reduce
travel time. Regarding turns, it should be noted that protected only phasses ¢he
highest delay to left turning traffiel(. On poorly design left turns, this delay can cause
vehicles waiting to turn to queue into the mainline vehicular traffic. Situations like this are
dangerous and can cause congestion and delays in thiene&iaffic. It is obvious that poor
signal timing can cause delays at the intersection where the timing is being used, however,

poor signal timing can cause delays in traffic upstream. In fact, upstream delay induced by

17



downstream traffic can be cadsley improper offset of signal green timés. (Attempts

have been made to increase the travel speed and reduce the travel time of transit travel
options like busses. In order to expedite bus travel, transit options have been given signal
priority. Thismeans that they are allowed to maintain their travel, even if it causes an out of
sequence signal cycle. Giving transit vehicles signal priority can cause delay at the
intersection and in the overall network, especially, as the number of transit veltotases

(16).

Given the number of different variables and factors that contribute to high and low
level performance of transportation networks, it is difficult and/or time consuming for
existing models to make accurate predictions of traffic flowmwels, travel time and
congestion.While it is known that commuters and the networks they use during their
commute are relativelstable, developing a tool that utilizes social network analysis to
examine the existing network and how to maximize its efiyavould be beneficial. This
social network analysis tool can be used to analyze existing infrastructure to ensure that it is
used efficiently and benefits individual commuters as well as the society as a whole.
Specifically, individual commuters woulabefit through reduced travel time and more
reliable travel time predictions on a variety of transportation networks. Social network
analysis of transportation networks could be used to identify critical locdtionsw or
additional infrastructure expaion and construction. In addition, this tool could create a
sustainable solution by focusing infrastructure expenditures on precise locations, reducing
capital expenditures and reducing the use of finite resources in unneeded construction.

The scop of this projectfocuses on applying SNA to existing transportation

networks and already completed transportation studies. Specifically, two different
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transportation networks are studied and analyzed using social network analysis tools. This

research ugetraffic data from the case studies as the base data for entry and analysis within
the social network analysis framework. The results of applying social network analysis tools
to transportation network study and analysis are preseBi@ekifically, Bomacich Power, 2

Step Reach, Eigenvector, and Betweeness Centrality are stuliew) the data presented in

the case studies, new transportation network models ae¢oped. These models consider

the relationships and interactions of all intersectiorikivthe network.
METHODOLOGY

A total of 5 case studies were utilized for this report. Studies from Jackson, MS and
the Mississippi Gulf coast were utilized for this work. One case study utilized information
provided bythe Shreveport, LA Public Work3epartment.Two case studies provided by
the Louisiana Department of Transportation and Development (LADOTD) were utilized in
this research. One castudy focused on a suburban intersection in Baton Rouge, LA. The
second casstudy focused on an urbaimezt in New Orleans, LA. As such, this research
focused on small world applications to simplify the social network analysis processes and
calcul ations. Accordingly, the traffic netwo
studied instead of the enticgy. In retrieving and analyzing related data, intersections
within the networks under investigation were considered nodes and traffic flow between
nodes was considered as flow or relation.
First Case Study

The first case study was based on a contiadlow intersectia (CFI) in Baton
Rouge, LA CFI 6s maintain Acontinuouso flow by

movements of perpendicul ar streets to occur
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cross over oitoming traffic while pgpendicular traffic of a cross street is allowed to

proceed through. Once left turn traffic has been given time to cross over to the left side of
opposing traffic lanes, the signals are changed, allowing opposing traffic to proceed while
also allowing lefturns to take place unimpeded. This is because left turn traffic has already
moved to the left of olwoming traffic. The data for this study is focused around the
intersection of US 61 (Airline Highway) and LA 3246 (Siegen Lane). Data were obtained
from a study that evaluated the change from a typical four leg signalized intersection where
each approach consisted of two through lanes, two left turn lanes and a dedicated right turn
lane to a continuous flow intersection (CHIBY. Figure 1 details the ¢ation, intersections
included and numbering system utilized in analyzing the first case study. This specific
location was selected because of the abundance of traffic count data for intersections located

within the fAineighborhoodo of this intersectio

Figure 1. Baton Rouge Transportation Network Mapi CFI Study

Based on traffic congestion information provided in the LADOTD report, the model

development process involved identifying 35 nodes or intersections, which would have
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traffic volumes studied. The associated traffic volumes between connected nodes were used
to describe the strength of the connection. The higher the traffic count is between two nodes,
the stronger is the connection. To evaluate the social makeupiofettszction network,

traffic volume data were entered into a social network analysis program. The software
selected for this research is Unicet 6.

Centrality was calculated using multiple functions within the Unicet 6 social network
analysis softwareEssentially, each type of centrality quantitatively measures the power or
importance of a chosen node. Relative to transportation planning, a central intersection
should be one that is given more focus to maintain consistent arektended travel time.
Performance of central intersections drives the overall performance of the area roadway
network. For instance, if an intersection that is central to the network is improved, the
overall travel time will improve. However, if a n@entral intersectiorsiimproved, the
network will likely see little improvement in reducing travel time and travel time variability.

To determine which intersections are most important for this research, four types of centrality
were analyzed. They are defined below:
1 Bonacid Power a degree centrality measure that determines node centrality based
on the degree centrality of adjacent nod®s For this study, degree centrality is

determined based on the total traffic volume that each node receives.

1 2 Step Reach determing centrality by summing the number of other nodes within 2

steps/links of a particular nodeé) (

9 Eigenvectoii a closeness centrality measure that determines node centrality based on
the closeness centrality of adjacent no@gs Closeness centrality alculated by

determining how many connections are required to connect a selected node to all
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other nodes. In this study, closeness centrality is a function of how many

intersections lie between any two selected intersections.

1 Betweeness a value to detenine how central/between other nodes within the
studied network a particular node is. Nodes with a value of zero are on the edge or

periphery of the networlg}.

Centrality analysis for each of the aforementioned attributes was calculated
individually ard compiled in a spreadsheet comparison chart. Analysis was also performed
using images. Diagrams with node size scaled based on centrality, were analyzed to gain a
better understanding of where the Apower o nod
clustes can be easily determined using network images. These details are provided in the
results and analysis section of this paper.

It was not possible to obtain specific signal timing information and data for this area.
As such, it was not included with tkdescussion of the results.
Second Case Study

The second case study involved the Tulane Avenue Feasibility project in New
Orleans, LA(17). This project represents a prenstruction/change study, and though does
not have before and after information, tafved abundant data about the local network for
the intersection as well as associated businesses and stakeholders. The related network map
was plotted in a manner similar to case study 1. Similar analysis to the one described for the
first case study wsalso condued for the second case study. Figure 2 diagrams the area and
layout of the intersections utilizedt was not possible to obtain specific signal timing
information and data for this area. As such, it was not included with the discustien of

results.
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Figure 2. New Orleans Network Map & Layout for Second Case Study

Thir d Case Study

Thethird case study analyzed traffic data in Shreveport, LA. The traffic engineering
department of Shreveport, LA posts annual traffic counts in a repbis.report also lists
the intersections with the highest traffic volume. For the purposes of this research, the traffic
counts for various roadways was used. Intersections which were ranked in the Shreveport
traffic report were labeled with their rankatersectionsiot ranked but used in this research
were labeled with letters to differentiate between city ranked intersections and other
intersections used for research purpogégure 3 details the layout of the intersections and
the area utilized fothis study. It was not possible to obtain specific signal timing
information and data for this area. As such, it was not included with the discussion of the

results.
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Figure 3. Shreveport Network Map & Layout for Third Case Study

Fourth Case Study

Thef ourth case study focused on Aprincipal
classification and the associated traffic counts are provided on the Central Mississippi
Planning and Development District website. The principal arterial streets used in the
research were located in th220, 55, and 120 triangle within the City of Jackson. This
was done to minimize the potential for distortion or shadow that an interstate roadway can
cause when analyzing the centrality of roadway netwoikiotal of 35 nodes were included
in this study. Figure 4 provides a map of the area with2eD, 55, and 420 that was
utilized for this studylt was not possible to obtain specific signal timing information and

data for this area. As such, it was not includét the discussion of the results.
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Figure 4. Jackson Network Map & Layout for Fourth Case Study
Fifth Case Study

The fifth case study analyzed traffic data in the Biloxi, Gulfport, and Pascagoula
metropolitan area. Of the case studies performedatbaincluded the most rural roadways.
It was also adjacent to a popular beach and port area with the full network extending inland
to rural areasA total of 118 nodes located in these three cities and inland rural areas were
included in this case studyigure 5 details the Gulfport, Biloxi, and Pascagoula areas that
were utilized for this studylt was not possible to obtain specific signal timing information

and data for this area. As such, it was not included with the discussion of the results.
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Figure 5. Mississippi Gulf Coast Network Map & Layout for Fifth Case Study
DISCUSSION OF RESULTS

The analysis of the CFI in Baton Rouge was compiled in a spreadsheet and is detailed
in Table2. Each node was ranked for each category of centstlitiied. Node 11 and node
19 each ranked number one in two of the centrality measures. Table 1 provides the details
and rankings for each of these categories and nodes. As shown in Figure 1, Node 11 was the
CFl intersection of US 61 (Airline Highway) ahd\ 3246 (Siegen Lane). Interestingyne
traffic volume reported in the case study increased after the completion of construction of the
CFI. This result indicates that this intersection is central to the network studied, aligning with
the general findigs of the social network analyses. As such, this intersection is critical to the
overall level of traffic congestion within its network. For instance, in a more restricted state,
prior to constructing the CFl, the intersection was more congested withr dig/lag times

and reduced traffic volume. As a result, the other intersections within the network had to
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