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ABSTRACT 

With the advancement of battery technologies, more electric vehicles are expected to 

get introduced in the market. The energy needed to run those batteries is enormous. This calls 

for developing optimization models that help governments plan for energy expansion and to 

coordinate the efforts between energy suppliers and charging station investors. To supply this 

need, in this paper we propose a two-stage stochastic mixed-integer programming (MIP) 

formulation to establish a dynamic multi-period plan that maximizes the expected monetary 

return from expanding power cells to electric vehicle charging stations over a pre-specified 

planning horizon. We propose a Sample Average Approximation (SAA) algorithm to solve 

our proposed optimization model. We choose Washington, DC as a testing ground to visualize 

and validate the modeling results.
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INTRODUCTION 

Nowadays,  electric vehicles (EV)  are shaping  the future  of transportation, as the 

advances  in batteries storage  capabilities  allow a car  like the  Tesla  S model  to  travel  

almost  300 miles on a single charge, compared  to the  more popular  Nissan leaf, which can 

travel  only 85 miles. This breakthrough makes electric cars more realistic and feasible than 

ever before.  It is one of the alternatives that is hoped to become the substitute for fossil fuel, 

which is scarce and harmful to the environment.  The use of EV leads to an increase in the the 

energy requirements, which call for plans to expand the infrastructure. According to 

Washington State’s  Department of Transportation, a total  of 228,725 kWh of energy were 

supplied  to  charge  EV cars  between  2012 and  2015, which is equivalent  to  22,397 gallons 

of gas [1]. 

As the adoption rate of EV is expected to increase, the need for more charging stations 

is apparent. In 2029, it is expected that the load from EVs will reach 107 aMW [2]. Hence, 

preparations should be made in advance to be ready to cover the power requirements. The main 

reason of this work is to provide decision makers at electric utilities and charging stations’ 

investors a tool that helps in coordinating the efforts and to better plan for the imminent 

increase in EV cars. It makes decisions regarding where to expand power, and based on that it 

decides where to locate charging stations.  Several papers in literature addressed the problem 

of locating charging stations. Wang & Lin [3] propose a mixed integer program that locates 

charging stations using a flow-based set covering.  The objective is to minimize costs of 

locating the charging stations. They are located at the shortest paths to cover all demand from 

traveling flow of cars.  Using grid partition method, the location and size of each charging 

station is determined and the location of each partition is found using Genetic Algorithm by 

Ge, Feng, & Liu [4].  The aim is to minimize the direct and indirect travel losses to the charging 

station while considering traffic density and station’s capacity limitations. MirHassani & 

Ebrazi [5] present mixed integer linear programming based on the flow refueling location 

model (FRLM) that developed by Kuby & Lim [6]. The main idea of FRLM is to locate several 

charging stations in a long round trip using maximum cover. The paper extends on the FRLM 

by considering more assumptions like driver behavior, which produced solutions faster than 

FRLM. Likewise, Chung & Kwon [7] develop a multi period planning of constructional plan 

of charging stations based on the FRLM using three different methods: a multi period 

optimization, a forward myopic method, and a backward myopic method.  He, Venkatesh, & 

Guan [8] present two schemes: a global optimal schedule that minimizes the costs of for all 

EVs in a day by deciding the optimal charging and discharging of power, and a local optimal 

schedule to minimize total EV costs within a sub group. Bayram et al. [9] considers charging 

stations provided with power storage units to alleviate stochastic demand.  The main goal is to 



 

provide electricity from grid to the storage units and reroute customers to different stations. 

Stochastic models are proposed to achieve these objectives.  A simulation-optimization model 

is proposed by Xi, Sioshansi, & Marano [10] to locate charging stations so as to maximize 

their utilization.  There are three steps presented to attain this objective. The first is to get the 

volume of flow for EV cars. Then a simulation model is utilized to determine the number of 

cars successfully finishing a charge at a station.  Finally, a linear programming model is given 

to decide the sizing and location of each charging station.  Wang & Lin [11] extends the work 

of Watson & Woodruff [12] by taking into consideration several constraints, like facility 

budget, types of stations, and possible rerouting of EVs.  In [13], an optimal control strategy 

for a charging station equipped with a power storage, integrated EVs, and sources of renewable 

energy is provided using a multi period mixed linear integer programming model. The 

objective is to maximize economic benefits by determining power levels in storage units and 

charging and discharging power of EV. A stochastic chance-constrained programming model 

is also given assuming uncertainty in demand and power generation, EV state of charge, and 

the times of connection and disconnection. 

To the best of the author’s knowledge, none of the prior studies modeled the feasibility 

of locating EV charging stations based on electricity grid power availability. Moreover, there 

are very limited studies that consider system uncertainties such as EV adoption rates, EV flow 

rate, and charging capacity that often impact the location and routing decisions of electric 

vehicles. To fill this gap in the literature,   this paper introduce a novel two-stages  stochastic 

programming model  that helps  governments   in planning  for  power  expansion  in  

anticipation of the  imminent  growth  in  EV  adoption   rates,   which will lead to an increase 

in the demand  of energy from charging  stations. The model decides in the first stage  the  

areas  where it is best  to expand  power at  based  on the  flow of cars per year at  the  roads  

in that area, and in the second stage, the decisions for locating the charging stations are made. 

The outcome of this study provides a number of managerial insights such as optimal expansion 

decision of power grid and deployment of charging stations decision under limited budget 

availability, which can effectively aid decision makers to design a robust network to adopt 

electric vehicles in a given region. 
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OBJECTIVE 

This study develops a two-stage stochastic programming model which takes into 

account the uncertainty in both the adoption rates and charging behavior of geographic regions. 

Further, we consider the important links between the power and transportation systems by 

ensuring that electric vehicle charging stations are only installed where there is a sufficient 

power support.   In addition to proposing the general model, another important contribution of 

this paper is applying this model to a real-world case study.   We use Washington, DC as a 

testing ground in our case study. This region possesses a number of favorable factors (e.g., 

high income and dense population) that are likely to attract intensive electric vehicle 

infrastructure investment in the future.  We solve the two-stage stochastic program using a 

Sample Average Approximation algorithm and present the computational efficiency to solve 

the proposed model by using this algorithm. 
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METHODOLOGY 

This section presents a two-stage stochastic programming model formulation to 

establish a dynamic  multi-period plan  that maximizes  the  expected  monetary return from 

expanding power cells and  electric  vehicle charging  stations over a pre-specified  planning  

horizon under electricity demand uncertainty. For the convenience of the readers, the 

mathematical notation is summarized in Table 1. 

Table 1 Description of the sets, parameters and variables used in this study 

Notation Description 

Sets 

𝐼 Set of rows 

𝐽 Set of columns 

𝐼𝑖 Set of neighboring  rows of row 𝑖∈𝐼 
𝐽𝑗 Set of neighboring  columns of column 𝑗∈𝐽 

𝑇 Set of time periods 

𝑆 Set of capacities for charging stations 

Ω Set of scenarios 

Parameters 

𝜉𝑖𝑗𝑡 Fixed cost of expanding  power in cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time period 𝑡 𝜖 𝑇 

𝜇𝑖𝑗𝑡 Expected profit from car traffic in dollars for cell  (𝑖,𝑗) 𝜖 (𝐼,𝐽)in time period 𝑡 𝜖 𝑇 

𝑀𝑡
𝑝
 Budget  availability for expansion in time period 𝑡 𝜖 𝑇  

𝑓𝑖𝑗𝑡 Flow (cars/time period)  at cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time period 𝑡 𝜖 𝑇 

𝜑𝑠𝑡 Cost of opening a charging  station  of size 𝑠 𝜖 𝑆 in time period 𝑡 𝜖 𝑇 

𝑀𝑡
𝑐 Budget availability for locating charging stations  in time period 𝑡 𝜖 𝑇 

𝑐𝑖𝑗𝑘𝑙𝑡
𝑟  Cost  of reallocating   power  to  a  charging  station   located  at  cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) 

from  cell (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗) in time period 𝑡 𝜖 𝑇 

𝜓𝑖𝑗𝑘𝑙𝑡 Expected income (in $/kWh) obtained  from reallocating  power to a charging 

station  located at cell(𝑖,𝑗) 𝜖 (𝐼,𝐽) from cell (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗) in time period 𝑡 𝜖 𝑇 

𝑑𝑖𝑗𝑡
𝜔  Power demand (in kWh) at a charging station located in cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time 

period 𝑡 𝜖 𝑇 under scenario 𝜔 𝜖 Ω 

𝑐𝑖𝑗𝑠 Capacity  (in kWh)  of a charging  station  of size 𝑠 𝜖 𝑆 located  in cell 

(𝑖,𝑗) 𝜖 (𝐼,𝐽) 
𝛾𝑖𝑗𝑡 Minimum  utilization required  for a charging  station  located  at  cell 

(𝑖,𝑗) 𝜖 (𝐼,𝐽) in time period 𝑡 𝜖 𝑇 

𝑟𝑖𝑗𝑡 Amount of residual  power available  at cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time 𝑡=1 

𝛼𝑡 Percentage  of car charged  in time period 𝑡 𝜖 𝑇 

𝛽 Unit  power requirement for each car 

𝜌𝜔 probability of scenario 𝜔 𝜖 Ω 

Decision variables 

𝐴𝑖𝑗𝑡 1 if cell (𝑖,𝑗) 𝜖 (𝐼,𝐽)  is selected for power expansion in time period 𝑡 𝜖 𝑇; 0 
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otherwise 

𝑌𝑖𝑗𝑠𝑡
𝜔  1 if a charging  station  of size 𝑠 𝜖 𝑆 is open at cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time period t 

𝜖 𝑇 under 

scenario 𝜔𝜖 Ω; 0 otherwise 

𝐵𝑖𝑗𝑘𝑙𝑡
𝜔  Amount of power transferred from cell (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗) to cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time   

period 𝑡 𝜖 𝑇 under  scenario 𝜔 𝜖 Ω 

𝑅𝑖𝑗𝑡
𝜔  Amount of power remaining  at cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time   

period 𝑡 𝜖 𝑇 under  scenario 𝜔 𝜖 Ω 

 

 

Model Formulation 

 

 

In the two-stage stochastic programming model formulation, the first stage decides the 

electric power capacity expansion decision to support the installation of charging station in the 

second stage.  We consider the area for this study is divided into a square grid and the 

parameters of the mathematical model are defined for each cell in the grid. The cells are 

referred to through their respective row and column number. Due to the nature of the problem’s 

constraints, dummy rows and columns are added above, below, to the right, and to the left of 

the grid.  This is done to insure the validity of some constraints. The values of parameters in 

those cells are set so that they do not affect the solution of the model. We define 𝐼=
{2,…,|𝐼|−1} as the set of candidate rows and 𝐽={2,…,|𝐽|−1} as the set of candidate 

columns for possible power expansion of electric vehicle charging stations over a set of time 

periods 𝑡∈𝑇. Each cell (𝑖,𝑗)∈(𝐼,𝐽) referred to by its respective row 𝑖 and column number 𝑗. 
We further define 𝐼𝑖 (indexed by 𝑘∈ 𝐼𝑖) and 𝐽𝑗 (indexed by 𝑙∈ 𝐽𝑗) be the neighboring cells of 

a selected cell (𝑖,𝑗)∈(𝐼,𝐽) where(𝑙,𝑘)≠(𝑖,𝑗). For each cell (𝑖,𝑗)∈(𝐼,𝐽),  𝑓𝑖𝑗𝑡 denote the 

expected number of cars that will in a given time period 𝑡∈𝑇. We assume that this flow 

generates a profit of 𝜇𝑖𝑗𝑡 for the charging stations, if a station is located at cell (𝑖,𝑗)∈(𝐼,𝐽) in 

time period 𝑡∈𝑇. We represent 𝜉𝑖𝑗𝑡 as fixed investment cost of locating a charging station at 

(𝑖,𝑗)∈(𝐼,𝐽) in time 𝑡∈𝑇. We assume that 𝑀𝑡
𝑝
 define as the budget availability to select cells 

for expanding power for electric vehicle charging stations in a given time period 𝑡∈𝑇.  The 

model is designed so that if a cell is selected, a set of surrounding cells to the selected cell are 

prohibited from being chosen for power expansion to ensure the sparsity of the charging 

stations. We feel this is necessary at the early stages of building the infrastructure for EV, since 

the adoption rate of EV cars increase steadily. Sparsity insure that the covering of demand will 

not be exaggerated.  It is assumed that if a cell is selected, the expanded power is enough for 

the expected flow of cars.   

 

The objective of the second stage is to maximize the expected profits of reallocating power 

from adjacent cells. The stochastic element in the second stage is demand denoted by  𝑑𝑖𝑗𝑡
𝜔   (in 

kWh), and this is due to the uncertainty in the amount of energy drawn by EV owners at the 

charging stations. Let  Ω be the set of scenarios of different realization of power demand for 

the charging stations located in cell (𝑖,𝑗)∈(𝐼,𝐽) at a given time period 𝑡∈𝑇 and 𝜔∈Ω 

defines a particular realization. Let 𝜑𝑠𝑡 denote the cost of opening a charging station of size 
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𝑠∈𝑆 in time period 𝑡∈𝑇, and at that time period, we are given a budget 𝑀𝑡
𝑐  to open the 

charging stations. Since decisions for power expansion are based on the current observed flow, 

the demand may increase when the charging stations are built.  In that case, we assume that 

the amount of power may transfer from cell (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗) to cell (𝑖,𝑗)∈(𝐼,𝐽) in time period 

𝑡∈𝑇 under scenario 𝜔∈Ω by incurring a reallocation cost of  𝑐𝑖𝑗𝑘𝑙𝑡
𝑟 . This in turn  will increase 

the income (in $/kWh) of a charging  station  by serving additional customers  visited  at  cell 

(𝑖,𝑗)∈(𝐼,𝐽) in time  period  𝑡∈𝑇 and  is denoted  by 𝜓𝑖𝑗𝑘𝑙𝑡. It is worth to note here that the 

cells will also have the option to retain their excess energy which they can use in remaining 

time periods.  Additionally we make following assumptions to simplify our modeling approach 

without the loss of generality: 

 

• Demand is assumed to be equal or larger than the demand from flow of cars at the first 

stage. 

• Demand is increasing at all cells as time periods increase. 

• Grid power is available all the time. 

• All charging stations will be of fast charging DC chargers. This assumption is made to 

ensure the ability to meet the demand. 

 

We now introduce the following first and second-stage decision variables for our two-

stage stochastic programming model formulation. The first-stage decision variables 𝑨≔

{𝐴𝑖𝑗𝑡|(𝑖,𝑗)𝜖 (𝐼,𝐽),𝑡 𝜖 𝑇}, select the set of cells for possible power expansion of electric vehicle 

charging stations in a given time period𝑡. The first set of second-stage decision variables 𝒀≔

{𝑌𝑖𝑗𝑠𝑡|(𝑖,𝑗)𝜖 (𝐼,𝐽),𝑠 𝜖 𝑆,𝑡 𝜖 𝑇,𝜔𝜖 Ω} select the size, cell, and time to open a charging station 

in a given scenario. 

 

The other second-stage  decision  variables  include  𝑩≔{𝐵𝑖𝑗𝑘𝑙𝑡
𝜔 |(𝑖,𝑗)𝜖 (𝐼,𝐽),(𝑘,𝑙)∈

(𝐼𝑖,𝐽𝑗),𝑡 𝜖 𝑇,𝜔𝜖 Ω} denote the amount of power transferred from cell (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗) to cell 

(𝑖,𝑗)𝜖 (𝐼,𝐽) in time period 𝑡 𝜖 𝑇 under  scenario  𝜔 𝜖 Ω and  𝑹≔

{𝑅𝑖𝑗𝑡
𝜔|(𝑖,𝑗)𝜖 (𝐼,𝐽),𝑡 𝜖 𝑇,𝜔𝜖 Ω}  denote  the  amount of power remaining at cell (𝑖,𝑗)𝜖 (𝐼,𝐽) in 

time period 𝑡 𝜖 𝑇 under scenario  𝜔 𝜖 Ω. The following is a two-stage stochastic mixed-integer 

linear programming (MILP) model formulation of the problem referred to as model [EVC]: 
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In [EVC], the objective function (1) is the sum of the first-stage profits and the 

expected second-stage profits. The first-stage profits maximize the monetary return from flow 

that the charging stations may get by expanding power in a given cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) in time 

period 𝑡 𝜖 𝑇. Budget is an important aspect in any project. Constraints (2) is given here because 

it is usually necessary to be accounted for. It limits the number of cells that can be selected in 

a given time period 𝑡 𝜖 𝑇 with a pre-specified budget 𝑀𝑡
𝑝
. Constraints (3) ensure that if power 

is expanded into a cell at time period 𝑡−1 then it will still be selected in the subsequent periods 

𝑡 𝜖 𝑇. Constraints (4) ensure that the distribution of charging stations around a selected cell 

(𝑖,𝑗) 𝜖 (𝐼,𝐽) is sparse and prevents a set of surrounding cells to the selected cell from being 

chosen for power expansion. Constraints (5) set the binary restrictions for the first-stage 

decision variables. 
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In the second-stage, the objective function (6) maximizes the monetary return of 

rerouting power to cover extra demand. Constraints (7) limit the number of charging stations 

that can be opened in a given time period 𝑡 𝜖 𝑇 with a pre-specified budget 𝑀𝑡
𝑐. Constraints (8) 

indicate  that if a charging  station  is opened  in an earlier time period,  it will still remain open 

in the  subsequent  time  periods. Constraints (9) indicate that a charging station is open only 

if the expected utilization is attractive for the investors. Constraints (10) ensure that the power 

rerouted is no more what is available. Since power can be drawn from adjacent cells as 

necessary, the remaining amount should be monitored. Constraints (11) assign the remaining 

power after reallocation to the next time period. Constraints (12) indicate that the residual 

power at the first period is initialized with the parameter 𝑝𝑖𝑗1, which is the amount of residual 

power available  at the beginning. If the  demand  is more  than  the  expected  flow, power  

from adjacent  cells (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗)  can  be rerouted to the selected cell (𝑖,𝑗) 𝜖 (𝐼,𝐽) to fulfill 

the unaccounted for increase in demand which is denoted by constraints (13) . Constraints (14) 

indicate that at most one charging station of size 𝑠 𝜖 𝑆 is opened in a given cell (𝑖,𝑗) 𝜖 (𝐼,𝐽)in 

time period 𝑡 𝜖 𝑇 under scenario 𝜔 𝜖 Ω. Finally, constraints (15) set the binary restrictions and 

(16), (17) are the standard non-negativity constraints. 

 

Solution Algorithm 

 

 

This section presents the solution technique used to solve the model [EVC].  Note that by 

setting |Ω|=1 and  |T|=1 i.e., a single scenario and a single time period, we can show that 

the problem [EVC] is a special case of a capacitated facility location problem which is known 

to be an NP-hard problem [14]. When the number of scenarios in our stochastic program model 

are too large, commercial solvers, such as CPLEX, cannot solve the large-scale instances of 

this problem. To overcome this computational challenging problem, in this section we propose 

a sampling based algorithm which is known as Sample Average Approximation method (SAA) 

to solve the problem. The aim is to generate high quality solution for the problem in a 

reasonable amount of time. 

 

Sample Average Approximation 

The  two-stage  stochastic  program  is challenging  to solve by exact  solution  techniques  

and  commercial solvers, such as CPLEX  fails to solve even a moderate  size of this  problem.  

Theretofore, SAA method is employed to reduce the computational burden to solve our 

problem.  With the SAA approach, the objective function is approximated through a random 

sample of scenarios.  SAA is used extensively to solve large scale supply chain network flow 

related problems, such as [15], [16] and others. Interested readers may refer to review the 

works from Kleywegt et al.  [17] for the proof of convergence properties  of SAA. In SAA, a 

sample 𝜔1,𝜔2,…,𝜔𝑁 of 𝑁  realization  of the random  vector ω is generated  from Ω according 

to a probability distribution P and  they  are  solved repeatedly  until  a pre-specified  tolerance  

gap  is achieved.   After the scenarios are generated (e.g.,  𝑁 scenarios), problem [EVC] is 

estimated by following SAA problem: 
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As the sample size increases the optimal solution of (18), 𝐴𝑁, and the optimal  value 

𝑣𝑁 , converges with probability one to an optimal  solution of the original problem [EVC] [17]. 

The following steps briefly summarize the Sample Average Approximation (SAA) technique 

to solve problem [EVC]. 

 

1. Generate   M   independent demand  scenarios  of size  𝑁   i.e., 

{𝑑𝑚
1(𝜔),𝑑𝑚

2(𝜔),…,𝑑𝑚
𝑁(𝜔)},"m=1,…,M where 𝑑= {𝑑𝑖𝑗𝑡

𝜔,∀(𝑖,𝑗)∈(𝐼,𝐽 ),𝑡 ∈

 𝑇 ,𝜔 ∈ Ω} and solve the corresponding  SAA: 
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The optimal objective value is denoted by 𝑣𝑁
𝑚 and the optimal solution by 

 𝐴𝑁
𝑚,𝑚=    1,…𝑀. 

2. Compute  the  average  of the  optimal  solutions  obtained  by  solving  all SAA 

problems, 𝑣𝑀
𝑁 and variance, 𝜎

𝑣𝑀
𝑁
2  : 

                 ä
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M

m

m

N

N
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M
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1

1
                                                                  (21) 

 

where, 𝑣𝑀
𝑁 provides  a statistical upper  bound  on the  optimal  objective  function  

value 𝑣∗ for the  original  problem  defined by (1)-(17) . Since 𝑀  samples are 

generated and 𝑣𝑁,
1𝑣𝑁
2,…,𝑣𝑁

𝑀  are independent, the variance of 𝑣𝑀
𝑁  is given by: 

 

   2

1

2 )(
)1(

1 N

M

M

m

m

Nv
vv

MM
N
M

-
-

= ä
=

s                                                            (22) 

3. Pick a feasible first-stage  solution 𝐴∈𝑨 obtained  from Step 1 of the SAA algorithm, 

i.e., one of the  solutions  from 𝐴𝑁
𝑚 and  estimate  the  objective  function  value of the 

original  problem [EVC] using a reference sample 𝑁′as follows: 
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The estimator 𝑔𝑁′(𝐴) serves as a lower bound for the optimal objective function value 

of problem [EVC]. We now generate a large set of power demand scenarios  (𝑁′) i.e., 

{𝑑1(𝜔),𝑑2(𝜔),…,𝑑𝑁
′(𝜔)
} ∀𝑛=1,…,𝑁′. Typically, sample size 𝑁′ is chosen much 

larger than the sample size 𝑁  in the SAA problems i.e., ′≫𝑁 . We can estimate the 

variance of 𝑔𝑁′(𝐴) as follows: 
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4. Compute the optimality gap (𝑔𝑎𝑝𝑁,𝑀,𝑁′(𝐴)) and its variance (𝜎𝑔𝑎𝑝
2 ) using the 

estimators calculated in Steps 2 and 3. 
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The confidence interval for the optimality gap is then calculated as follows: 
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with 𝑧𝛼≔𝜙
−1(1−𝛼) , where 𝛷(𝑧) is the cumulative  distribution function  of the 

standard normal distribution. 
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DISCUSSION OF RESULTS 

This section conducts numerical studies to test the proposed model and draw relevant 

managerial insights. We have chosen Washington DC as a testing ground for this study. The  

following subsections  first describe the  input parameters used in this study,  then conducts a 

computational study on model [EVC] and present results  from the case study  and draw 

managerial  insights  and finally we present the performance  of the algorithms.  

We selected Washington DC for our case study in which we apply the model. The 

reason behind choosing Washington DC is that the city offers incentives to own EV cars and 

the adoption rate is high.  The map is divided into a grid of size 50×46 cells (i.e., |𝐼|=

 50,|𝐽 |=46) including the dummy ones mentioned earlier. Each cell is approximately 0.5 

mile2 in area. We have considered five time periods for this study, and they are measured in 

years starting in 2017 and ending in 2021. All costs are calculated based on 2017 dollars and 

then adjusted for inflation.  The data for cell-specific parameters were obtained only for those 

that have a road passing through them.  The values for parameters for other cells were given a 

value of zero. The cost of expanding power (𝜉𝑖𝑗𝑡) in a given cell (𝑖,𝑗)∈(𝐼,𝐽) is set to $700,000 

[18] and we assume that we are given an annual budget (𝑀𝑡
𝑝
= $5M, $6M, $7M, $8M, and 

$9M) to expand power for years 2017 - 2021 [18].  Similarly, the construction cost for locating 

a fast electric vehicle charging station (𝜑𝑠𝑡) in a new location is set to $50,000 [19].  We 

investigate three different electric vehicle charging station capacities (s = 100 kWh, 200 kWh, 

and 300 kWh).  We further assume that we are given an annual budget (𝑀𝑡
𝑐= $400, $550, $700, 

$850, and $1000) (in thousand dollars) to build infrastructures for electric vehicle charging 

stations in our tested region for years 2017 – 2021 [20]. The cost of reallocating power (𝑐𝑖𝑗𝑘𝑙𝑡
𝑟 ) 

to a charging station located at cell (𝑖,𝑗)∈(𝐼,𝐽) from cell  (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗)  in time period 𝑡∈

𝑇 is set to $0.12/kWh [21]. Finally, we set 𝜇𝑖𝑗𝑡 = $0.5/kWh, 𝛾𝑖𝑗𝑡 =40%, 𝛽 = 10 kWh, and 𝛼𝑡 = 

20% for our base case experimentations. 

The  first experiment  studies  the  impact  of budget  on power expansion  and  installing  

charging  station decisions. We conduct four sets of experiments:  a) base budget for both 𝑀𝑡
𝑝
  

and 𝑀𝑡
𝑐, (b) 𝑀𝑡

𝑐 is increased by 50% while keeping the budget 𝑀𝑡
𝑝
 fixed, (c) 𝑀𝑡

𝑝
  is increased 

by 50% while keeping the budget 𝑀𝑡
𝑐   fixed, and (d) both 𝑀𝑡

𝑝
  and 𝑀𝑡

𝑐  are increased by 50%. 

Figures 1-2 show the deployment of power expansion cells 𝐴𝑖𝑗𝑡 (represented by “square” 

symbol  in Figures 1-2) and charging stations 𝑌𝑖𝑗𝑠𝑡
𝜔  (represented by symbol “circle” in Figures 

1-2) for the experiments (a) and (d).  From these figures it is observed that he decisions of 𝐴𝑖𝑗𝑡 

and 𝑌𝑖𝑗𝑠𝑡
𝜔  are highly impacted by the budgets 𝑀𝑡

𝑝
  and 𝑀𝑡

𝑐  set by the decision makers. It is 
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observed that the results for experiment (b) show a little progression of selecting charging 

stations over the base case scenario (shown in Figure 1). This is obvious because  in experiment 

(b) the  budget  is fixed for the  power  expansion  decision,  so the  model  gets  less options  

to  establish  the charging  station  in the second stage. Now, if we increase the power expansion 

budget by 50% and fixed the charging  station  budget,  then  the number  of cell for power 

expansion  shows a significant increasing trend,  where the  charging  stations show a little  

increasing  trend (experiment (c)). However, it is important to note that many of the cells 

selected in the first-stage are eventually not picked for locating charging stations in the second-

stage. Finally,  Figure 2 shows the results  when  the  budget  for both  power expansion  and  

charging  station  increases  by 50% over years 2017 - 2021.  It is seen that increasing both 

budgets show a rapid expansion of the number of cells for power expansion and charging 

stations. We observe some additional charging stations being located far away from the 

original cluster of stations primarily due to serving the high density of population, hospitals, 

and colleges located near the stations.  

 

In summary, it is observed that depending on the values of 𝑀𝑡
𝑝
 and 𝑀𝑡

𝑐  set by the 

decision maker many more cells and charging stations are opened to provide a broader 

coverage for the electric vehicles. These results provide an insightful ground for decision 

makers to invest in power expansion to certain regions to maximize profit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1 Electric vehicle charging station expansion planning under base case scenario. 
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FIGURE 2 Electric vehicle charging station expansion planning under experiment (d). 

 

This  section  presents  the  impact  of power demand (𝑑𝑖𝑗𝑡
𝜔 )  variation  on the  number  

of cell selection for power expansion  and  installing  charging  station  decisions.  For our 

experiment we assume that the power demand follow normal distribution at each cell  (𝑖,𝑗)∈
(𝐼,𝐽)  in time period  𝑡∈𝑇 . We  conduct  two  set  of experiments: (a) low power  demand  

variation  and  (b)  high  power  demand  variation.  The  standard deviation  (SD)  of power  

demand  is set  equal  to  0.15 for low power  demand  variation  and  0.50 for high  power  

demand variation. Results indicates that  as the level of power demand increases, the number 

of cell for power expansion and number charging station increases under  a specified budget  

limit. More specifically, the model decides to select more cell for power expansion and 

charging station of different sizes to cope against the power demand variability and on average 

the number of cell for power expansion increases by 18.75% and charging station by 35.89%. 

Figure 3(a) summarizes the number of power expansion cells (PE) and charging stations (CS) 

opened under low and high demand variabilities. This in turn  will have an  impact  on the  

amount  of power  transferred from cell (𝑖,𝑗)∈(𝐼,𝐽) to  cell (𝑘,𝑙)∈(𝐼𝑖,𝐽𝑗) under scenario  

𝜔∈Ω, as illustrated in Figure 3(b).  This implies that the power demand variability level 

highly impacts the power expansion and establishing charging station decisions. 
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FIGURE 3 Impact of power demand variability on system performance. 

 

We now analyze the impact of car traffic flow, 𝑓𝑖𝑗𝑡, on system performance. Figure 4 

provides a relationship between charging station opening decisions 𝑌𝑖𝑗𝑠𝑡
𝜔  under different 𝑓𝑖𝑗𝑡 

values. Clearly, increasing the flow (𝑓𝑖𝑗𝑡) at each cell (𝑖,𝑗)∈(𝐼,𝐽) in time period 𝑡∈𝑇 impacts 

the charging station opening decisions 𝑌𝑖𝑗𝑠𝑡
𝜔  under a pre-specified budget restriction. For 

instance, a 50% increase in 𝑓𝑖𝑗𝑡 increases the average number of charging stations |𝑌| by 

31.4%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 
FIGURE 4 Impact of 𝑓

𝑖𝑗𝑡
 on locating charging station decisions. 

 

 

 

 

  
(a) 𝑋𝑖𝑗𝑡, 𝑍𝑖𝑗𝑡

𝜔  vs. time (b) 𝑌𝑖𝑗𝑘𝑙𝑡
𝜔  vs. time 
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CONCLUSIONS 

This  study  develops a novel optimization framework  that can  be used to  design widespread  

adoption of electric  vehicle charging  stations for a pre-specified  planning  horizon  subjected  

to  stochastic  power demands. The model can be computationally very challenging depending 

on the size of the cells, time periods, and scenarios set by the decision maker. To alleviate these 

challenges and to solve real scale problem instances, we have used Sample Average 

Approximation (SAA) algorithm. 

 

By using Washington, DC as a testing ground, we conducted thorough computational 

experiments to test our model and to draw managerial insights.  Our computational 

experiments reveal some insightful results  about  the  impact  of cell expansion  (𝑀𝑡
𝑝
 ) and  

charging  station  budgets  (𝑀𝑡
𝑐) on electric  vehicle adoption  performance.  We further conduct 

sensitivity analysis on the impact of power demand (𝑑𝑖𝑗𝑡
𝜔 ) variability and vehicle flow rate (𝑓𝑖𝑗𝑡) 

on system performance.  It is observed that the model decides to open an additional 18.75% 

power expansion cells and 35.89% charging stations to counter high power demand variability 

over the base case scenario.  Moreover, we observe that a 50% increase in vehicle flow 𝑓𝑖𝑗𝑡 
will open an additional 31.4% charging stations in our tested region under a specified budget 

constraint. We believe our results will used by energy distribution agencies as well as charging 

stations investors to understand the  growth  pattern of EV cars on the  road,  and  take  action  

towards  providing   services and exploit the economic benefits that comes with it and 

eventually help to develop a future sustainable transportation system. 
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RECOMMENDATIONS 

This research opens up a number of future research opportunities. Our study makes 

several assumptions, such as fast charging stations, known electric vehicle traffic volume, no 

power failure, and fixed charging capacity over time.  High fidelity models will be developed 

in the future to relax these assumptions. Further, it is interesting to integrate renewable energy 

sources into the optimization framework and assess the robustness of the model in a situation 

where a disruption (e.g., hurricane, tornado) impacts the system.  These issues will be 

addressed in future studies. 
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